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Two-dimensional Monte-Carlo simulations of lattice polymers were carried out employing Lennard-Jones 
(L J) type intramolecular interactions. The shape-dependent properties of these polymers were studied 
over a large range of interaction parameters and temperatures. The variation of the critical constant was 
also analysed. Two-dimensional surfaces of sections were used to determine the portions of the parameter 
space which corresponded to 0-conditions. The behaviour of LJ polymers far from 0-conditions was 
determined. The investigations were facilitated by a simple scaling argument which resulted in considerable 
time savings in computations. 
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I N T R O D U C T I O N  

It has been observed that the statistical laws governing 
lattice spin systems and polymers can be described 
by similar relations 1. Hence, the previously gained insight 
from the statistical physics of spin systems coupled to 
the relative ease of the chain generation on lattices made 
lattice polymers a very popular model for simulation 
studies. 

Random walk historically has been among the 
most powerful numerical techniques for studying 
conformational properties of lattice systems. Starting 
with the original work of Kuhn z, various procedures 
have been employed to approximate the distribution of 
the configurational space of flexible macromolecules 3'4. 
Once the excluded volume effect has been incorporated 
into the walk generation process, the more realistic 
procedure of the self-avoiding-walk (SAW) is then 
created 5. However the excluded volume effect introduces 
a certain bias into the sampling process and this bias can 
be corrected by an early recipe of Rosenbluth and 
Rosenbluth 6. SAW, being especially powerful on lattice 
simulations, has been analysed in detail for various 
two- and three-dimensional lattices TM. Upon including 
intramolecular interactions between the repeating units 
of the chain, one can then study the correlations between 
the 'numerical '  and the ' rea l '  experiments 15-17 and there 
have been a number of excellent reviews of this field18-2o. 
Most of these studies have been carried out in 
0-conditions. Under these conditions, contraction of a 
macromolecule can sometimes compensate its expansion 
due to volume effects so that the total effect of long range 
interactions becomes negligible and the polymer behaves 
like a random coil 21. These conditions can be achieved 
by working at a specific temperature for each 
polymer-solvent  pair. However the conformational 
properties of polymers can also be studied far from 
0-conditions by varying the long range interaction 
parameters as well as the temperature. Here we report 
our findings in two-dimensional square lattices which self 

interact via Lennard-Jones (LJ) potential interactions. 
We analysed the effects of temperature and potential 
parameters on the shape-dependent properties, such as 
end to end distance ( ( r  2 ) ) and radius of gyration ( ( s  2 ) ), 
of chains of varying sizes. 

< r E > = < ( r N - - r l ) Z >  (1) 

1 
<S2> = ~ ~/ (r i -- rOOM) 2 (2) 

where rco M defines the coordinates of the centre of mass. 
The critical constant and its dependence on the 

interaction potential were also analysed. 

C O M P U T A T I O N S  

The generation of SAW on two-dimensional lattices is 
rather straightforward 22. Once a sufficiently large 
number of configurations are created, the canonical 
ensemble average of a property can simply be computed : 

( 0 >  = ~ Oi e x p ( - f i E , )  (3) 

Z exp ( - f ie i) 

where fl is 1/kT,  E, is the energy of individual 
configurations obtained from two-body interactions and 
O~ is the measured property for the configuration i. 

However the no-self-intersection rule disturbs the 
randomness of the sampling and a correction factor for 
each chain has to be included6 : 

( 0 >  = ~ W,O, e x p ( - f i E , )  (4) 

W i exp ( - f lei)  

with 

Wi = 1-I dk/q (5) 
k 

where dk is the available number of directions at step k 
and q is the total number of directions available which 
is 3 in the case of SAW on square lattices. 
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The energy of each configuration is computed simply 
from the sum of two-body contributions. As in common 
practice, the interaction between two bonded units is 
considered as constant throughout the simulation. The 
fact that the vibrational motions of the chemical bonds 
are excluded does not produce any significant error in 
the final description of long chains. We have used the 
LJ potential as the interaction between non-bonded 
units. 

V= 4~F( °" ~12 -- ( °" )61 
Lkri j /  ~ (6) 

where e and a are the potential parameters which define 
the range and the strength of the interaction. This is not 
a long range potential in the mathematical sense, 
however, depending on the size of the cell length, even the 
interactions between fifth and sixth nearest neighbours 
contribute to the self energy. In our computations we 
have used a potential cut-off at eight cell lengths. 

In this averaging process, only those walks which 
mature to the specified length are considered, that is, in 
the case of a ring closure the complete walk is discarded 
from the sampling. This procedure causes severe 
computational restrictions on the chain generation 
process 23. For  example, in the case of a chain length of 
200, as many as 80% of the configurations are discarded. 
Since chain generation is the most time-consuming step 
of the computation, a technique was used which enabled 
Monte-Carlo averages over a wide range of parameters 
to be obtained with considerable savings in computer 
time 2.. 

Since chain generation is independent of the interaction 
parameters or temperature, from one calculation at fixed 
temperature, e and tr values, it is possible to generate 
averages for any given set of temperature, e and a. To 
achieve this, a calculation with a fairly large sample space 
is carried out. During the calculation the following sums 
are saved for each configuration as well as any desired 
property of that configuration. 

S~ E ( I ~  12 " (F~pq) 6 = - -  S~ = ~ ( 7 )  
p>q \ r p q /  p>q 

Then the total energy of the configuration i can be written 
as 

E i = 4e(aX2S] - a6S~) (8) 

with the corresponding Boltzmann probability factor of 
exp( - f lE i ) .  Then, once these configurations are 
generated, any average property at a different temperature 
(or fl), e and a can be computed without regenerating 
these configurations. The new energy at 2' can be 
computed as : 

Ei(e' , a )  = Ei(e,  a)  (9) 
g, 

the Boltzmann factor for a different temperature is 

e x p ( - f i T )  = exp( - - f iT)  e x p ( - 6 f l T )  (10) 

with fl' = fl + 6ft. 
In the case where a is varied, the energy expression is 

slightly more time consuming: 

Ei(~, a ')  = 4 e [ ( a ' ) 1 2 S ] - ( a ' ) 6 S ~ ]  (11) 

Combining these equations, any energy, Boltzmann 
factor, ( r  2) or ( s  2) can be computed for a wide range 

of parameters with substantial savings in computational 
time. To give an example, the initial run of generating 
100000 configurations takes ,-,4000 s on IRIS 4D/20, 
where 900 sets of calculations of various temperature, e, 
and a take ,,,5000 s. Equations (9) - (11)  are exact for 
the uniform sampling used here. However it is possible 
to employ such a scaling for the case of standard 
importance sampling of the Metropolis Monte-Carlo in 
a perturbation-like scheme. That is, the results would be 
reliable within a radius of convergence which depends 
on the size of the configuration space sampled. Work 
along these lines is in progress in our laboratories. 

RESULTS AND DISCUSSION 

We have carried out simulations of chains ranging from 
100 to 200 repeating units. In each case, 100000 
configurations are generated and the summations $1 and 
S 2 are stored as well as the end-to-end distances and 
radii of gyration for each configuration of the fixed length. 
The length of the unit cell in the square lattice is kept 
constant and the a parameter of the LJ potential is 
expressed in terms of this length L. For  these calculations 
we have used T = 300 K, e = 0.3 kcal m o l -  1 and a = L. 
Although the number of chains does not seem to be very 
large, a convergence study showed that the fluctuations 
of energy and the other properties remain in an 
acceptable range for 300 K. Then around 1000 sets of 
parameters are tested again at every chain length, 
for T = 1 5 0 - 4 5 0  K, e = 0 . 1 - 1 . 1  kcal mo1-1 and 
a = 0.7-1.1L. Figure 1 shows the results for the variation 
of ( r  E ) as a function of the three parameters for a chain 
length of 200. It is seen that at e values above 0.5 kcal 
mo1-1, almost independent of temperature and a, 
collapsed polymers are obtained (these observations are 
also valid for various chain lengths). This is not 
unexpected as high e means high attractive energy 
especially for the nearest neighbours. Only for very large 
a, can this effect be compensated. Also temperature does 
not seem to play a great role in the high e regime. 
Therefore we concentrate on small e, i.e. ~<0.5 kcal 
mol-1.  In that case, a plot of a - T  displays a valley 
which resembles 0-conditions. From scaling-theoretical 
arguments, this can be understood since there is always 
a set of parameters which should give the same 
measurements. However the question is whether these 
parameters are found in physically reasonable ranges. 
For  e = 0.3 kcal mol -  1, the collapsed polymers are found 
between tr = 0.8L and 0.9L and below 200 K. The 
transition from collapsed to random flight is rather steep 
and occurs for e < 0 . 2 8  kcal mo1-1, a > L  and 
T > 450 K. The conclusions from plots of ( s 2 ) are along 
the same lines. The variation of average energy does not 
produce any unexpected behaviour with high e and low 
T resulting in low energy regimes. 

In addition to the above findings we have studied the 
size problem of macromolecules as a function of the 
length. It is well established that ( r  2 ) of random walk 
polymers changes by a power law 

( r  2 )  = a N  v (12) 

where v is a universal constant which depends only on 
the lattice dimensionality but not on the type of the 
lattice. In the case of random walk on two-dimensional 
lattices, this constant v is ~ 1.5. This value, however is 
not a universal constant when there are interactions 

2726 POLYMER, 1992, Volume 33, Number 13 



(RZ) 
O0 
30 
) 0  
)0 
)0 
~0 

N :  - v u  

(RZ) 

o . ~ , . . . a = 0 . 9 2  

N=,.. u,_, 

) 0  
)0 
)0 
~0 
0 
0 

~ v  . . . . . . . . .  / t o o l  eps  . . . . . . . .  / . . . . .  

(RZ) 
r ~ 4 0 0  

~ 0 0 0  

1 6 0 0  

l ;~o 0 

nO0 

tO o 

N=~, , , ,  ~- 1"=300 K 

Figure 1 Two-dimensional surfaces of the variation of ( r  2) as a 
function of tr, e and T 

between monomers, since the randomness of the walk is 
heavily disturbed 25"26. 

The variation of the critical constant (Figure 2) with 
interaction strength is somewhat more interesting. At 
constant a, there is a valley which presumably represents 
the 0-conditions with v = 1.0 for all temperature values 
studied. This valley corresponds to the e/kT = 0.5 line 
with fairly good accuracy. For constant e, the behaviour 
of v is not so simple. At low temperature, there seem to 
be two different minima bracketing a maximum at 
a = 0.9L. This maximum corresponds to the case where 
the length of the unit cell L coincides with the minimum 
of the LJ potential ( 2 -1 /6=  0.891). A similar double 
minimum behaviour is also observed when a one- 

Lattice polymers." E. Yurtsever and S. is.sever 

C r i t i c a l  E x p o n e n t  f o r  ( R 2 )  

2 .4  

~.o 
1.6 

[-6 

s i g n . u -  . . . .  

C r i t i c a l  e x p o n e n t  f o r  ( R 2 )  

1 . 6 0  f 
l . 5 0  

1.~!-0 

1 -~10 

1 "~O 

1.10 
t .o0 

C r i t i c a l  E x p o n e n t  f o r  ( R 2 )  

~-0 

1.6 

1.~ 

)-6 

T=L, , , ,  .~ 

Figure 2 Two-dimensional surfaces of the variation of the power v as 
a function of (r, e and T 

dimensional variation of a is carried out. At low a values 
(large distance between successive units), the polymer is 
like a random flight polymer since the interactions are 
very low, and for the high a values, then the interactions 
become very repulsive again resulting in fairly random 
walks. In the intermediate region, collapsed polymers are 
detected. This double minimum type plot is seen also in 
the e - a  surfaces, however a clear explanation of the 
rather irregular surface eludes us. 

In summary, we have shown that by a very simple 
strategy, we were able to analyse the variation of 
shape-dependent properties and the critical constant as 
functions of temperature and interaction parameters on 
square lattices. The regions for the collapsed and random 
walk polymers are recognized as well as the ranges 
corresponding to 0-conditions. From the variation of the 
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critical constant v, the transitions away from O-conditions 
can also be studied. 
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